z-logo
open-access-imgOpen Access
Statistical wind direction modeling for the analysis of large scale wind power generation
Author(s) -
Koivisto Matti,
Ekström Jussi,
Mellin Ilkka,
Millar John,
Lehtonen Matti
Publication year - 2017
Publication title -
wind energy
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.743
H-Index - 92
eISSN - 1099-1824
pISSN - 1095-4244
DOI - 10.1002/we.2030
Subject(s) - wind power , wind speed , meteorology , wind direction , environmental science , monte carlo method , scale (ratio) , electricity generation , wind profile power law , autoregressive model , marine engineering , engineering , power (physics) , statistics , geography , mathematics , physics , electrical engineering , cartography , quantum mechanics
Understanding the effects of large‐scale wind power generation on the electric power system is growing in importance as the amount of installed generation increases. In addition to wind speed, the direction of the wind is important when considering wind farms, as the aggregate generation of the farm depends on the direction of the wind. This paper introduces the wrapped Gaussian vector autoregressive process for the statistical modeling of wind directions in multiple locations. The model is estimated using measured wind direction data from Finland. The presented methodology can be used to model new locations without wind direction measurements. This capability is tested with two locations that were left out of the estimation procedure. Through long‐term Monte Carlo simulations, the methodology is used to analyze two large‐scale wind power scenarios with different geographical distributions of installed generation. Wind generation data are simulated for each wind farm using wind direction and wind speed simulations and technical wind farm information. It is shown that, compared with only using wind speed data in simulations, the inclusion of simulated wind directions enables a more detailed analysis of the aggregate wind generation probability distribution. Copyright © 2016 John Wiley & Sons, Ltd.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here