z-logo
open-access-imgOpen Access
Stochastic dynamic response analysis of a floating vertical‐axis wind turbine with a semi‐submersible floater
Author(s) -
Wang Kai,
Moan Torgeir,
Hansen Martin O. L.
Publication year - 2016
Publication title -
wind energy
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.743
H-Index - 92
eISSN - 1099-1824
pISSN - 1095-4244
DOI - 10.1002/we.1955
Subject(s) - turbine , marine engineering , vertical axis , vertical axis wind turbine , environmental science , engineering , aerospace engineering , engineering drawing
Floating vertical‐axis wind turbines (FVAWTs) provide the potential for utilizing offshore wind resources in moderate and deep water because of their economical installation and maintenance. Therefore, it is important to assess the performance of the FVAWT concept. This paper presents a stochastic dynamic response analysis of a 5 MW FVAWT based on fully coupled nonlinear time domain simulations. The studied FVAWT, which is composed of a Darrieus rotor and a semi‐submersible floater, is subjected to various wind and wave conditions. The global motion, structural response and mooring line tension of the FVAWT are calculated using time domain simulations and studied based on statistical analysis and frequency‐domain analysis. The response of the FVAWT is compared under steady and turbulent wind conditions to investigate the effects of turbulent wind. The advantage of the FVAWT in reducing the 2P effect on the response is demonstrated by comparing the floating wind turbine with the equivalent land‐based wind turbine. Additionally, by comparing the behaviour of FVAWTs with flexible and rigid rotors, the effect of rotor flexibility is evaluated. Furthermore, the FVAWT is also investigated in the parked condition. The global motions and structural responses as a function of the azimuthal angle are studied. Finally, the dynamic response of the FVAWT in selected misaligned wind and wave conditions is analysed to determine the effects of wind‐wave misalignment on the dynamic response. Copyright © 2016 John Wiley & Sons, Ltd.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here