z-logo
open-access-imgOpen Access
Another engineering wake model variant for horizontal axis wind turbines
Author(s) -
Werle Michael J.
Publication year - 2016
Publication title -
wind energy
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.743
H-Index - 92
eISSN - 1099-1824
pISSN - 1095-4244
DOI - 10.1002/we.1832
Subject(s) - wake , turbine , turbulence modeling , thrust , turbulence , mechanics , wind speed , wind power , rotor (electric) , wake turbulence , marine engineering , computational fluid dynamics , meteorology , wind profile power law , physics , aerospace engineering , geology , engineering , mechanical engineering , electrical engineering
Abstract An engineering model is presented for predicting the performance of a single turbine located in an incoming turbulent, sheared, wind velocity field. The approach used is a variant of the well‐known and documented Ainslie eddy viscosity approach as also employed in the Direct Wake Meandering model. It incorporates a new and simple means of representing the rotor's loading profile, initializing the calculations, simplifying the wakes' shear layer mixing model and accounting for wind shear effects. Additionally, two figures of merit are employed for assessing the reliability of all data used and predictions provided. The first, a wake momentum‐flux/thrust parameter, is used for quantitatively assessing the accuracy and utility of both measured and/or computational wake data. The second, a rotor swept area wake‐averaged velocity, is employed as a single quantitative measure of a turbine's impact on its downstream neighbor. Through detailed comparisons with three independent state‐of‐the‐art Computational Fluid Dynamic generated datasets and a field‐measured dataset, the current model is shown to be accurate for turbine rated power levels from 100 kW to 2.3 MW, wind speeds of 6 to 22 m s −1 (corresponding to turbine thrust coefficient levels of 0.14 to 0.8) and free‐stream turbulence levels from 0% to 16%. Copyright © 2015 John Wiley & Sons, Ltd.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here