z-logo
open-access-imgOpen Access
A flywheel in a wind turbine rotor for inertia control
Author(s) -
Jauch Clemens
Publication year - 2015
Publication title -
wind energy
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.743
H-Index - 92
eISSN - 1099-1824
pISSN - 1095-4244
DOI - 10.1002/we.1784
Subject(s) - flywheel , inertia , rotor (electric) , turbine , wind power , control theory (sociology) , engineering , moment of inertia , power (physics) , rotary inertia , automotive engineering , computer science , mechanical engineering , physics , control (management) , electrical engineering , classical mechanics , quantum mechanics , artificial intelligence
In this paper, a flywheel energy storage that is an integral part of a wind turbine rotor is proposed. The rotor blades of a wind turbine are equipped with internal weights, which increase the inertia of the rotor. The inertia of this flywheel can be controlled by varying the position of the weights, i.e. by positioning them closer to the center of rotation (closer to the hub) or closer to the tip of the blades. The simulation model used in this study is introduced briefly. The equation system of the flywheel is set up. Finally, simulations of different scenarios show the performance of this controllable flywheel. The conclusion is that the proposed system can mitigate transients in the power output of wind turbines. Hence, it can support the frequency control in a power system by contributing to the power system inertia. © 2014 The Authors. Wind Energy published by John Wiley & Sons, Ltd.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom