z-logo
open-access-imgOpen Access
Characterizing the response of a wind turbine model under complex inflow conditions
Author(s) -
Howard K. B.,
Hu J. S.,
Chamorro L. P.,
Guala M.
Publication year - 2015
Publication title -
wind energy
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.743
H-Index - 92
eISSN - 1099-1824
pISSN - 1095-4244
DOI - 10.1002/we.1724
Subject(s) - turbine , anemometer , rotor (electric) , boundary layer , wake , inflow , wells turbine , turbulence , wind tunnel , mechanics , physics , marine engineering , engineering , aerospace engineering , meteorology , turbine blade , electrical engineering
A horizontal axis wind turbine model was tested in a closed‐circuit wind tunnel under various inflow conditions. Separate experiments placed the test turbine (i) in the wake of a three‐dimensional, sinusoidal hill, (ii) in the wake of another turbine and (iii) in the turbulent boundary layer, as a reference case. Simultaneous high‐frequency measurements of the turbine output voltage, rotor angular velocity along with streamwise and wall normal velocity components were collected at various locations through the turbine's miniature direct‐current (DC) generator, a high‐resolution laser tachometer and cross‐wire anemometer, respectively. Validation trials were conducted first in order to characterize the test turbine's output and response to the baseline turbulent boundary layer. Analysis was performed by comparing the cross‐wire anemometry measurements of the incoming flow with the turbine voltage output to investigate the unsteady rotor kinematics under different flow perturbations. Using spectral, auto‐correlation and cross‐correlation methods, it was found that the flow structures developing downwind of the hill leave a stronger signature on the fluctuations and spectrum of the rotor angular velocity, as compared with those flow structures filtered or deflected by placing a turbine upwind. In summary, we show that the effects on downwind turbines of complex terrain and multi‐turbine arrangements are consistent with the induced modifications by the hill or turbine on the large scale structures in the incoming flow. Copyright © 2014 John Wiley & Sons, Ltd.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here