Open Access
Predictive control of an experimental wind turbine using preview wind speed measurements
Author(s) -
Verwaal N. W.,
Veen G. J.,
Wingerden J. W.
Publication year - 2015
Publication title -
wind energy
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.743
H-Index - 92
eISSN - 1099-1824
pISSN - 1095-4244
DOI - 10.1002/we.1702
Subject(s) - feed forward , turbine , wind speed , model predictive control , controller (irrigation) , wind power , control theory (sociology) , engineering , rotor (electric) , control engineering , computer science , control (management) , aerospace engineering , meteorology , physics , electrical engineering , artificial intelligence , mechanical engineering , agronomy , biology
Abstract The development of a more reliable method of measuring the wind field upstream of a turbine (light detection and ranging) has enabled the implementation of feedforward‐related control strategies to enhance the control performance of wind turbines. By incorporating wind speed measurements, the controller is able to anticipate upon future events and thereby improve structural load mitigation and power regulation of the wind turbine. This work aims to experimentally verify the benefits of using predictive and feedforward‐based control strategies over industry standard control solutions. To achieve this, both a feedforward and a model predictive control strategy are presented, which have been validated on an experimental wind turbine in a wind tunnel. Both the model predictive controller and feedforward algorithm have shown superior performance over a baseline controller in terms of rotor speed regulation under wind speed disturbances. The experiment confirmed that a phase advantage in the control input of the predictive controller led to this performance increase. It has also been found that knowledge of just the current wind speed can already significantly increase the control performance. Copyright © 2014 John Wiley & Sons, Ltd.