z-logo
open-access-imgOpen Access
On atmospheric stability in the dynamic wake meandering model
Author(s) -
Keck RolfErik,
Maré Martin,
Churchfield Matthew J.,
Lee Sang,
Larsen Gunner,
Aagaard Madsen Helge
Publication year - 2014
Publication title -
wind energy
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.743
H-Index - 92
eISSN - 1099-1824
pISSN - 1095-4244
DOI - 10.1002/we.1662
Subject(s) - wake , turbulence , turbulence kinetic energy , atmospheric instability , mechanics , k epsilon turbulence model , planetary boundary layer , physics , meteorology , large eddy simulation , wake turbulence , k omega turbulence model , turbulence modeling , wind speed
The present study investigates a new approach for capturing the effects of atmospheric stability on wind turbine wake evolution and wake meandering by using the dynamic wake meandering model. The most notable impact of atmospheric stability on the wind is the changes in length and velocity scales of the atmospheric turbulence. The length and velocity scales in the turbulence are largely responsible for the way in which wind turbine wakes meander as they convect downstream. The hypothesis of the present work is that appropriate turbulence scales can be extracted from the oncoming atmospheric turbulence spectra and applied to the dynamic wake meandering model to capture the correct wake meandering behaviour. The ambient turbulence in all stability classes is generated using the Mann turbulence model, where the effects of non‐neutral atmospheric stability are approximated by the selection of input parameters. In order to isolate the effect of atmospheric stability, simulations of neutral and unstable atmospheric boundary layers using large‐eddy simulation are performed at the same streamwise turbulence intensity level. The turbulence intensity is kept constant by calibrating the surface roughness in the computational domain. The changes in the turbulent length scales due to the various atmospheric stability states impact the wake meandering characteristics and thus the power generation by the individual turbines. The proposed method is compared with results from both large‐eddy simulation coupled with an actuator line model and field measurements, where generally good agreement is found with respect to the velocity, turbulence intensity and power predictions. Copyright © 2013 John Wiley & Sons, Ltd.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here