
Self‐induced vibrations of a DU96‐W‐180 airfoil in stall
Author(s) -
Skrzypiński Witold Robert,
Gaunaa Mac,
Sørensen Niels,
Zahle Frederik,
Heinz Joachim
Publication year - 2014
Publication title -
wind energy
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.743
H-Index - 92
eISSN - 1099-1824
pISSN - 1095-4244
DOI - 10.1002/we.1596
Subject(s) - airfoil , stall (fluid mechanics) , vibration , computation , aerodynamics , mechanics , computational fluid dynamics , physics , turbine blade , turbine , vortex , structural engineering , aerospace engineering , engineering , acoustics , computer science , algorithm
This work presents an analysis of two‐dimensional (2D) and three‐dimensional (3D) non‐moving, prescribed motion and elastically mounted airfoil computational fluid dynamics (CFD) computations. The elastically mounted airfoil computations were performed by means of a 2D structural model with two degrees of freedom. The computations aimed at investigating the mechanisms of both vortex‐induced and stall‐induced vibrations related to a wind turbine blade at standstill conditions. In this work, a DU96‐W‐180 airfoil was used in the angle‐of‐attack region potentially corresponding to stall‐induced vibrations. The analysis showed significant differences between the aerodynamic stability limits predicted by 2D and 3D CFD computations. A general agreement was reached between the prescribed motion and elastically mounted airfoil computations. 3D computations indicated that vortex‐induced vibrations are likely to occur at modern wind turbine blades at standstill. In contrast, the predicted cut‐in wind speed necessary for the onset of stall‐induced vibrations appeared high enough for such vibrations to be unlikely. Copyright © 2013 John Wiley & Sons, Ltd.