z-logo
open-access-imgOpen Access
Analysis of the damping contribution of power system stabilizers driving wind power plants
Author(s) -
DomínguezGarcía J. L.,
Bianchi F. D.,
GomisBellmunt O.
Publication year - 2014
Publication title -
wind energy
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.743
H-Index - 92
eISSN - 1099-1824
pISSN - 1095-4244
DOI - 10.1002/we.1574
Subject(s) - wind power , power (physics) , marine engineering , environmental science , control theory (sociology) , automotive engineering , engineering , aerospace engineering , physics , electrical engineering , computer science , control (management) , quantum mechanics , artificial intelligence
Recently, the concept of wind power plant has been introduced as a result of the increment of wind power penetration in power systems. A wind power plant can be defined as a wind farm, which is expected to behave similar to a conventional power plant in terms of power generation, control and ancillary services. Transmission system operators are requiring wind power generation to help to power system with some ancillary services such as fault ride through or power system stabilizer capability. Therefore, it is important to study the power system stabilizer capability of wind power plants. In this paper, a comparison of various power system stabilizer schemes is presented. The effect of the distance from the tie line to the wind farm on the controller response and the influence of wind power plants proximity to synchronous generators are also evaluated. These studies show that wind power plants have promising power system stabilizer capability even using local input signals. However, the location of the wind power plant on the power system is a critical factor. Copyright © 2012 John Wiley & Sons, Ltd.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here