z-logo
open-access-imgOpen Access
An improved BEM model for the power curve prediction of stall‐regulated wind turbines
Author(s) -
Martínez Jaime,
Bernabini Luca,
Probst Oliver,
Rodríguez Ciro
Publication year - 2005
Publication title -
wind energy
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.743
H-Index - 92
eISSN - 1099-1824
pISSN - 1095-4244
DOI - 10.1002/we.147
Subject(s) - airfoil , stall (fluid mechanics) , aerodynamics , blade element momentum theory , wind power , wind tunnel , engineering , marine engineering , wing , structural engineering , mechanics , turbine , aerospace engineering , turbine blade , physics , electrical engineering
Blade element momentum (BEM) theory is the standard computational technique for the prediction of power curves of wind turbines; it is based on the two‐dimensional aerodynamic properties of aerofoil blade elements and some corrections accounting for three‐dimensional wing aerodynamics. Although most BEM models yield acceptable results for low‐wind and pitch‐controlled regimes where the local angles of attack are small, no generally accepted model exists up to date that consistently predicts the power curve in the stall regime for a variety of blade properties and operating conditions. In this article we present a modified BEM model which satisfactorily reproduces the power curves of four experimental wind turbines reported in the literature, using no free fit parameters. Since these four experimental cases comprehend a great variety of conditions (wind tunnel vs field experiments, different air densities) and blade parameters (no twist and no taper, no taper but twist, both twist and taper, different aerofoil families), it is believed that our model represents a useful working tool for the aerodynamic design of stall‐regulated wind turbines. Copyright © 2004 John Wiley & Sons, Ltd.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here