Developmental dynamics of neurogenesis and gliogenesis in the postnatal mammalian brain in health and disease: Historical and future perspectives
Author(s) -
Nakafuku Masato,
Águila Ángela
Publication year - 2019
Publication title -
wiley interdisciplinary reviews: developmental biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.779
H-Index - 45
eISSN - 1759-7692
pISSN - 1759-7684
DOI - 10.1002/wdev.369
Subject(s) - gliogenesis , neurogenesis , stem cell , neural stem cell , biology , neuroscience , regeneration (biology) , progenitor cell , adult stem cell , cellular differentiation , microbiology and biotechnology , genetics , gene
The mature mammalian brain has long been thought to be a structurally rigid, static organ since the era of Ramón y Cajal in the early 20th century. Evidence accumulated over the past three decades, however, has completely overturned this long‐held view. We now know that new neurons and glia are continuously added to the brain at postnatal stages, even in mature adults of various mammalian species, including humans. Moreover, these newly added cells contribute to structural plasticity and play important roles in higher order brain function, as well as repair after damage. A major source of these new neurons and glia is neural stem cells (NSCs) that persist in specialized niches in the brain throughout life. With this new view, our understanding of normal brain physiology and interventional approaches to various brain disorders has changed markedly in recent years. This article provides a brief overview on the historical changes in our understanding of the developmental dynamics of neurogenesis and gliogenesis in the postnatal and adult mammalian brain and discusses the roles of NSCs and other progenitor populations in such cellular dynamics in health and disease of the postnatal mammalian brain. This article is categorized under: Adult Stem Cells, Tissue Renewal, and Regeneration > Stem Cell Differentiation and Reversion Adult Stem Cells, Tissue Renewal, and Regeneration > Tissue Stem Cells and Niches Adult Stem Cells, Tissue Renewal, and Regeneration > Regeneration Adult Stem Cells, Tissue Renewal, and Regeneration > Stem Cells and Disease
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom