Premium
Adaptation to sensory loss
Author(s) -
Voss Patrice,
Collig Olivier,
Lassonde Maryse,
Lepore Franco
Publication year - 2010
Publication title -
wiley interdisciplinary reviews: cognitive science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.526
H-Index - 49
eISSN - 1939-5086
pISSN - 1939-5078
DOI - 10.1002/wcs.13
Subject(s) - crossmodal , sensory system , sensory loss , neuroscience , psychology , sensory processing , cognitive psychology , blindness , adaptation (eye) , perception , sensory deprivation , medicine , visual perception , optometry
The human brain has the remarkable ability to adapt to changes in its environment by benefiting from its ‘plastic’ properties. Following brain injury, the amputation of a limb, or the loss of a sensory input such as peripheral blindness, brain circuitry often seems to be able to reorganize itself in order to compensate for the handicap by being recruited to carry out tasks not associated with their prior ‘default’ functioning. The purpose of this review is to illustrate the brain's remarkable ability to adapt to changes in its environment, particularly when it is faced with a sensory loss. Two excellent models to study this phenomenon are provided by blind and deaf individuals. In both cases, studies have shown that they appear to compensate for the loss of sensory input with enhanced abilities in their remaining senses. These behavioral modifications are often coupled with changes in cerebral processing, generally in the form of crossmodal recruitment of deaffarented primary and secondary sensory areas. We will also discuss the possible mechanisms underlying these changes and whether the functional topography of these regions present in unimpaired individuals is preserved in blindness and deafness. The notion of a critical period for plastic changes will also be discussed and its importance will be shown to be twofold. On the one hand, the functional relevance of crossmodal processing appears to decrease as a function of the age of onset of the deficiency. On the other hand, the more cortical reorganization takes place, the less likely brain areas will be able to process input from its original sensory modality. This is especially important for deaf individuals as auditory input can now be restored thanks to cochlear implants. Copyright © 2010 John Wiley & Sons, Ltd. This article is categorized under: Psychology > Perception and Psychophysics Neuroscience > Development