Premium
Recent advances in quantum‐mechanical molecular dynamics simulations of proton transfer mechanism in various water‐based environments
Author(s) -
Sakti Aditya W.,
Nishimura Yoshifumi,
Nakai Hiromi
Publication year - 2019
Publication title -
wiley interdisciplinary reviews: computational molecular science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.126
H-Index - 81
eISSN - 1759-0884
pISSN - 1759-0876
DOI - 10.1002/wcms.1419
Subject(s) - molecular dynamics , hydronium , proton , chemical physics , chemistry , aqueous solution , nanoporous , proton transport , electronic structure , computational chemistry , ice ih , ion , molecule , physics , organic chemistry , quantum mechanics
Proton transfer in water‐based environments occurs because of hydrogen‐bond interaction. There are many interesting physicochemical phenomena in this field, causing fast structural diffusion of hydronium and hydroxide ions. During the last few decades, to support experimental observations and measurements, quantum‐mechanical molecular dynamics (QMMD) simulations with reasonable accuracy and efficiency have significantly unraveled structural, energetic, and dynamical properties of excess proton in aqueous environments. This review summarizes the state‐of‐the‐art QMMD studies of proton transfer processes in aqueous solutions and complex systems including bulk liquid water, ice phases, and confined water in nanochannel/nanoporous materials as well as reports on CO 2 scrubbing by amine‐based chemical absorption. This article is categorized under: Structure and Mechanism > Reaction Mechanisms and Catalysis Molecular and Statistical Mechanics > Molecular Dynamics and Monte‐Carlo Methods Electronic Structure Theory > Semiempirical Electronic Structure Methods Theoretical and Physical Chemistry > Reaction Dynamics and Kinetics