
Power and cost aware localized routing with guaranteed delivery in unit graph based ad hoc networks
Author(s) -
Stojmenovic Ivan,
Datta Susanta
Publication year - 2004
Publication title -
wireless communications and mobile computing
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.42
H-Index - 64
eISSN - 1530-8677
pISSN - 1530-8669
DOI - 10.1002/wcm.162
Subject(s) - computer science , destination sequenced distance vector routing , computer network , routing table , static routing , geographic routing , equal cost multi path routing , link state routing protocol , dynamic source routing , policy based routing , multipath routing , distributed computing , routing (electronic design automation) , routing protocol
In a localized routing algorithm, each node currently holding a message makes forwarding decision solely based on the position information about itself, its neighbors and destination. In a unit graph, two nodes can communicate if and only if the distance between them is no more than the transmission radius, which is the same for each node. This paper proposes localized routing algorithms, aimed at minimizing total power for routing a message or maximizing the total number of routing tasks that a network can perform before a partition. The algorithms are combinations of known greedy power and/or cost aware localized routing algorithms and an algorithm that guarantees delivery. A shortcut procedure is introduced in later algorithm to enhance its performance. Another improvement is to restrict the routing to nodes in a dominating set. These improvements require two‐hop knowledge at each node. The efficiency of proposed algorithms is verified experimentally by comparing their power savings, and the number of routing tasks a network can perform before a node loses all its energy, with the corresponding shortest weighted path algorithms and localized algorithms that use fixed transmission power at each node. Significant energy savings are obtained, and feasibility of applying power and cost‐aware localized schemes is demonstrated. Copyright © 2004 John Wiley & Sons, Ltd.