Premium
Commercial microwave link networks for rainfall observation: Assessment of the current status and future challenges
Author(s) -
Chwala Christian,
Kunstmann Harald
Publication year - 2019
Publication title -
wiley interdisciplinary reviews: water
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.413
H-Index - 24
ISSN - 2049-1948
DOI - 10.1002/wat2.1337
Subject(s) - hydrometeorology , rain gauge , radar , computer science , raw data , environmental science , meteorology , pointwise mutual information , weather radar , remote sensing , telecommunications , precipitation , geography , mutual information , artificial intelligence , programming language
Accurate observation of the high spatio‐temporal variability of rainfall is crucial for hydrometeorological applications. However, the existing observations from rain gauges and weather radars have individual shortcomings that can introduce considerable errors and uncertainties. A fairly new technique to get additional rainfall information is the usage of the country‐wide commercial microwave link (CML) networks for rainfall estimation by exploiting the measurements of rain‐induced attenuation along these CMLs. This technique has seen an increasing number of applications during the last years. Different methods have been developed to process the noisy raw data and to derive rainfall fields. It has been shown that CMLs can provide important line‐integrated rainfall information that complements pointwise rain gauge and spatial radar observations. There exist several limitations, though. Robustly dealing with the erratic fluctuations of the CML raw data is a challenge, in particular with the growing number of CMLs. How to correctly compensate for the biases from the effect of wet antenna attenuation for different CMLs also remains a crucial research question. Progress is additionally hampered by the lack of method intercomparisons, which in turn is hampered by restricted data sharing. Hence, collaboration is key for further advancements, also with regard to extended interaction with the CML network operators, which is a prerequisite to achieve increased data availability. In regions where rain gauges and weather radars are available, CMLs are a welcome complement. But in developing countries, which are characterized by weak technical infrastructure and which often suffer from water stress, additional rainfall information is a necessity. CMLs could play a crucial role in this respect. This article is categorized under: Science of Water > Hydrological Processes Science of Water > Water Extremes Science of Water > Methods