Premium
Thermal and physicomechanical properties of gamma‐irradiated EPDM/waste newsprint microfibers composites treated using acrylic styrene emulsion as a coupling agent
Author(s) -
Ali Magdy A. M.,
ElNemr Khaled F.,
Badawy Nagwa A.,
Saleh Wafaa
Publication year - 2019
Publication title -
journal of vinyl and additive technology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.295
H-Index - 35
eISSN - 1548-0585
pISSN - 1083-5601
DOI - 10.1002/vnl.21648
Subject(s) - microfiber , materials science , thermogravimetric analysis , composite material , newsprint , thermal stability , emulsion , styrene , natural rubber , polymer , copolymer , chemical engineering , kraft paper , engineering
This investigation deals mainly with thermal stability and crosslinking density of EPDM/newsprint microfibers composites. The recycled newsprint microfibers were treated using a different ratio of acrylic styrene emulsion (5, 10, and 15 wt% fiber) as a bonding agent to reinforce EPDM rubber matrix. The effect of microfibers content, namely, 5 up to 50 phr (part per hundred part of rubber) and the effect of ionizing radiation on EPDM/newsprint microfibers composites properties were investigated. The microfibers structure and EPDM/microfibers composite were investigated using X‐ray diffraction and FTIR analysis; the results indicate that bonding has occurred between the treated newsprint microfibers and EPDM polymer matrix. EPDM/untreated newsprint microfibers composites have achieved higher crosslinking density than EPDM matrix up to 50 phr microfibers content and up to 100 kGy then decreased with increasing gamma irradiation dose. Meanwhile treatment of the microfibers using 10 wt% acrylic styrene leads to improve crosslinking density at any microfibers content. Thermogravimetric analysis (TGA) was carried out for the microfibers and their composites. TGA indicated that the thermal stability of microfiber was enhanced using acrylic styrene. Whereas there is a slight improvement in thermal stability and activation energy of the composites due to adding treated microfibers using 10 phr microfiber content treated using10 wt% acrylic styrene emulsion and irradiated with 60 kGy gamma radiation dose. J. VINYL ADDIT. TECHNOL., 25:E91–E106, 2019. © 2018 Society of Plastics Engineers