z-logo
Premium
Evaluating recyclability of fly ash reinforced polyvinyl chloride foams
Author(s) -
Khoshnoud Parisa,
Wolgamott Jon Carl,
AbuZahra Nidal
Publication year - 2018
Publication title -
journal of vinyl and additive technology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.295
H-Index - 35
eISSN - 1548-0585
pISSN - 1083-5601
DOI - 10.1002/vnl.21541
Subject(s) - fly ash , materials science , composite material , polyvinyl chloride , ultimate tensile strength , charpy impact test , scanning electron microscope , filler (materials) , polymer
Using fly ash as a reinforcing filler can be very cost effective; however, the recycling of postconsumer products containing fly ash is of a considerable concern. In this study, the recycling of processed polyvinyl chloride (PVC) foam reinforced with fly ash was investigated by evaluating the effect of regrind content (up to 40 wt%) and fly ash content (up to 20 wt%) on the physical, mechanical, microstructural, and processing properties of the composites. Experimental results show an increase in the foam density with increasing regrind and fly ash contents. The melt viscosity increased with increasing the regrind concentration; however, it dropped with increasing the fly ash content. The tensile strength increased with increasing the regrind content, indicating a good degree of gelation in the composites. Meanwhile, the charpy impact strength of the composites decreased due to the high rigidity of fly ash particles. Dynamic mechanical analysis show that the storage modulus improved with both the addition and increasing the amount of regrind, which confirmed good stress transformation between the polymer foam matrix and the fly ash particles. The polymer matrix morphology, as was determined by scanning electron microscopy (SEM), confirmed uniform foam structure even with the addition of 40 wt% regrind in the virgin PVC. J. VINYL ADDIT. TECHNOL., 24:154–161, 2018. © 2016 Society of Plastics Engineers

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here