z-logo
Premium
Ethylene vinyl acetate as compatibilizer on cure characteristics and mechanical properties of (natural rubber)/(Recycled acrylonitrile‐butadiene rubber) blends
Author(s) -
Ahmad Hazwani Syaza,
Ismail Hanafi,
A. Rashid Azura
Publication year - 2017
Publication title -
journal of vinyl and additive technology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.295
H-Index - 35
eISSN - 1548-0585
pISSN - 1083-5601
DOI - 10.1002/vnl.21478
Subject(s) - materials science , natural rubber , composite material , vulcanization , ultimate tensile strength , acrylonitrile , tear resistance , compatibilization , ethylene vinyl acetate , polymer blend , polymer , copolymer
Ethylene vinyl acetate (EVA) has been used as a compatibilizer for (natural rubber)/(recycled acrylonitrile‐butadiene rubber) (NR/NBRr) blends, vulcanized by sulfur. EVA offers excellent heat, ozone, and weather resistance, whereas the vinyl acetate groups provide oil resistance to the blend. It exhibits good tear resistance and may be crosslinked. However, EVA exhibits poor low‐temperature flexibility. NBR gloves have excellent resistance to punctures, tears, and many types of chemicals, while NR has good physical and mechanical properties. NR/NBRr blends were prepared with various compositions with the EVA content fixed. Tensile properties, hardness, and swelling behavior tests were performed to determine the compatibility of NR/NBRr blends in the presence of EVA. Results indicated that incorporation of EVA into NR/NBRr blends improved tensile strength, modulus, and elongation at break compared with NR/NBRr blends without EVA. The improvement in hardness and reduction in resilience on compatibilization are due to an increase in crosslink density, which gives NR/NBRr blends better swelling resistance. Scanning electron microscopy of the fracture surfaces indicates that, with the addition of EVA in NR/NBRr blends, better adhesion between NR and NBRr was obtained, thus improving the compatibility of NR/NBRr blends. J. VINYL ADDIT. TECHNOL., 23:135–141, 2017. © 2015 Society of Plastics Engineers

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here