Premium
Application of nanometer size of polypyrrole as a suitable adsorbent for removal of Cr(VI)
Author(s) -
Katal Reza,
Ghiass Majid,
Esfandian Hossein
Publication year - 2011
Publication title -
journal of vinyl and additive technology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.295
H-Index - 35
eISSN - 1548-0585
pISSN - 1083-5601
DOI - 10.1002/vnl.20287
Subject(s) - sorption , polypyrrole , freundlich equation , aqueous solution , sorbent , langmuir , adsorption , materials science , chromium , chemical engineering , kinetics , nanometre , nuclear chemistry , chemistry , polymer , organic chemistry , composite material , metallurgy , polymerization , physics , quantum mechanics , engineering
The objective of this work was to investigate the sorption characteristics of polypyrrole (PPy) for the removal of Cr(VI) from aqueous solutions. The sorption process was carried out by a dynamic batch method in order to determine the optimum conditions. For a sorbent dose of 0.6 g in 100 mL of a Cr(VI) solution, at a contact time of 15 min and a pH of 3, a removal efficiency of 84.5% was achieved. The Morris–Weber and Lagergren equations, as well as a pseudo‐second‐order equation were examined to explore the kinetics of the removal process. In addition, the Langmuir, Freundlich, and Dubinin–Radushkevich isotherm models were applied to estimate the capacity, intensity, and energy of the sorption process. It was found that increasing temperature showed a positive effect on the ion sorption efficiency. In summary, PPy was shown to be a suitable candidate for chromium(VI) ion removal from aqueous solutions at different concentrations. J. VINYL ADDIT. TECHNOL., 2011. © 2011 Society of Plastics Engineers.