Premium
Comparative study of the effects of chlorinated polyethylene and acrylic impact modifier on the thermal degradation of poly(vinyl chloride) compounds and poly(vinyl chloride)/(oil palm empty fruit bunch) composites
Author(s) -
Abu Bakar Aznizam,
Hassan Azman,
Mohd Yusof Ahmad Fuad
Publication year - 2010
Publication title -
journal of vinyl and additive technology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.295
H-Index - 35
eISSN - 1548-0585
pISSN - 1083-5601
DOI - 10.1002/vnl.20237
Subject(s) - vinyl chloride , materials science , polyethylene , composite material , thermal stability , degradation (telecommunications) , thermogravimetry , polyvinyl chloride , palm oil , chemical engineering , polymer , chemistry , organic chemistry , copolymer , telecommunications , food science , computer science , engineering
The effects of chlorinated polyethylene (CPE) and acrylic impact modifier (AIM) on the thermal degradation of poly(vinyl chloride) (PVC) compounds and composites were investigated. The amounts of AIM and CPE used were fixed at 9 parts per hundred parts of resin (phr), while oil palm empty fruit bunch (OPEFB) fiber content was increased from 0 to 40 phr. To produce composites, the PVC formulations were dry‐blended by using a laboratory blender before being milled into sheets on a two‐roll mill at 165°C. The milled sheets were then hot‐pressed at 180°C. The thermal degradation of the specimens was evaluated by using thermogravimetry in a nitrogen environment. Thermal stability of the PVC/CPE compounds and PVC/CPE/OPEFB composites was improved by the addition of CPE. The CPE retarded the dehydrochlorination of PVC. However, the stabilization effect was reduced by the incorporation of OPEFB at levels of 30 and 40 phr. The presence of AIM accelerated the dehydrochlorination of PVC/AIM compounds and PVC/AIM/OPEFB composites. J. VINYL ADDIT. TECHNOL., 2010. © 2010 Society of Plastics Engineers