Premium
PVC modification through polymerization of a monomer absorbed in porous suspension‐type PVC particles
Author(s) -
Narkis M.,
ShachCaplan M.,
Haba Y.,
Silverstein M. S.
Publication year - 2004
Publication title -
journal of vinyl and additive technology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.295
H-Index - 35
eISSN - 1548-0585
pISSN - 1083-5601
DOI - 10.1002/vnl.20017
Subject(s) - materials science , polymerization , suspension polymerization , monomer , polymer chemistry , precipitation polymerization , ethylene glycol dimethacrylate , butyl acrylate , chemical engineering , polymer , vinyl chloride , chain growth polymerization , bulk polymerization , acrylate , radical polymerization , copolymer , composite material , engineering , methacrylic acid
In‐situ polymerization is the polymerization of one monomer in the presence of another polymer. It can be performed by sequential emulsion polymerization, or by reactions in the melt, in the solid phase, or in solution. The current report describes two methods to obtain poly(vinyl chloride) (PVC) modification through polymerization of a monomer absorbed in commercial porous suspension‐type PVC particles. The generated modified PVC products differ significantly in their structure and properties. The first approach includes absorption of a monomer/peroxide solution within porous suspension‐type PVC particles, followed by polymerization/crosslinking in the solid state at 80°C in an aqueous stabilizer‐free dispersion. The monomer/crosslinker pairs selected are styrene/DVB (divinyl benzene), methylmethacrylate/EGDMA (ethylene glycol dimethacrylate), butyl acrylate/EGDMA, and ethylhexyl acrylate/EGDMA. The influence of composition and nature of the polymerizing/crosslinking constituents on the modified PVC particle structure was studied by microscopy methods, porosity measurements, and dynamic mechanical behavior (DMTA). The level of molecular grafting between PVC and the modifying polymer was determined by solvent extraction experiments. This work shows that the different monomers used represent distinct courses of monomer transport through the PVC particles. The characteristics of the modified PVC particle indicate that the polymerization/crosslinking process occurs in both the PVC bulk, i.e., within the walls constituting a particle, and in the PVC pores. No indication of chemical intermolecular interaction within the modified PVC particles was found. In the second approach, a solution of monomer, initiator, and a crosslinking agent is absorbed in commercial suspension‐type porous PVC particles, thus forming a dry blend. This dry blend is subsequently reactively polymerized in a twin‐screw extruder at an elevated temperature, 180°C, in the molten state. The properties of the reactively extruded PVC/PMMA blends are compared with those of physical blends at similar compositions. Owing to the high polymerization temperature, short‐chain polymers are formed in the reactive polymerization process. Reactively extruded PVC/PMMA blends are transparent, form single‐phase morphology, have a single T g , and show mechanical properties comparable with those of the neat PVC. The resulting reactively extruded PVC/PMMA blends have high compatibility. J. Vinyl Addit. Technol. 10:109–120, 2004. © 2004 Society of Plastics Engineers.