Premium
Co‐injection molding of PVC with other thermoplastics: Processing, properties, and applications
Author(s) -
Parsons Mark,
Toyoda Paul
Publication year - 2002
Publication title -
journal of vinyl and additive technology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.295
H-Index - 35
eISSN - 1548-0585
pISSN - 1083-5601
DOI - 10.1002/vnl.10363
Subject(s) - materials science , composite material , core (optical fiber) , polycarbonate , polypropylene , layer (electronics) , vinyl chloride , molding (decorative) , delamination (geology) , copolymer , adhesion , polymer , paleontology , biology , subduction , tectonics
Rigid poly(vinyl chloride) (PVC) was co‐injected with glass‐fiber‐reinforced PVC (GFR‐PVC), polypropylene (PP), acrylonitrile‐butadiene‐styrene copolymer (ABS), and polycarbonate (PC) by using the Mono‐sandwich co‐injection process. Up to three through‐thickness skin‐core morphologies were observed along the length of the sample. Near the gate, the core was always a single, continuous layer. In some cases, the core diverged into multiple or discontinuous layers. Farther from the gate, flow of the core ceased, leaving a skin‐only region. The skin and core layers were more uniformly distributed through the test plaque when injection speed was low. Adhesion between PVC and PP was poor. Skin and core layers delaminated, and mechanical properties were poor. The PVC adhered well to GFR‐PVC, ABS, and PC. No layer delamination occurred, and mechanical properties were intermediate between those of the skin and core components alone. Dropped dart impact energy was controlled more by the skin layer than the core. In rigid PVC/GFR‐PVC co‐injected samples, impact energy was 2.5 times greater when GFR‐PVC was the core than when GFR‐PVC was the skin.