z-logo
Premium
Synthesis, characterization and luminescence properties of ZrBDC:Eu 3+ ,Tb 3+ nanoscaled metal organic frameworks
Author(s) -
Giang Lam Thi Kieu,
Agnieszka Opalińska,
Marciniak Łukasz,
Tien Dinh Manh,
Linh Pham Hoai,
Binh Pham Thanh,
Vu Nguyen,
Binh Nguyen Thanh,
Minh Le Quoc
Publication year - 2019
Publication title -
vietnam journal of chemistry
Language(s) - English
Resource type - Journals
eISSN - 2572-8288
pISSN - 0866-7144
DOI - 10.1002/vjch.201900050
Subject(s) - luminescence , materials science , tetragonal crystal system , nanoparticle , doping , powder diffraction , analytical chemistry (journal) , zirconium , hydrothermal circulation , scanning electron microscope , nuclear chemistry , phase (matter) , ion , metal ions in aqueous solution , europium , metal organic framework , metal , nanotechnology , crystallography , chemistry , chemical engineering , organic chemistry , optoelectronics , metallurgy , composite material , engineering , adsorption
Zirconium nanoscaled metal–organic frameworks doped and co‐doped with Eu 3+ and/or Tb 3+ (ZrBDC:Eu 3+ ,Tb 3+ ) have been synthesized by hydrothermal method using 1,4‐dicarboxylic acid as linkers. The luminescence spectra obtained indicated that under 254 nm excitation, the as‐synthesized ZrBDC:Eu 3+ ,Tb 3+ and ZrO 2 :Eu 3+ ,Tb 3+ nanoparticles have multicolour visible emissions at 473, 591, 612 and 701 nm assigned to the 5 D 0  →  7 F 1 , 5 D 0  →  7 F 2 , 5 D 0  →  7 F 3 and 5 D 0  →  7 F 4 transition of Eu 3+ ions and at 488, 582 and 621 nm assigned to 5 D 4  →  7 F, 5 D 4  →  7 F 5 ; 5 D 4  →  7 F 4 and 5 D 4  →  7 F 3 transitions of Tb 3+ ions, respectively. The X‐ray diffraction and field emission scanning electron microscopy results suggest that the ZrBDC:Eu 3+ ,Tb 3+ nanoscaled metal–organic frameworks can be used as precursors to design the tetragonal phase of ZrO 2 :Eu 3+ ,Tb 3+ nanoparticles with high purity and a narrow size distribution via heat treatment process. The as‐prepared ZrO 2 :Eu 3+ ,Tb 3+ nanoparticles have size of about 10‐15 nm with BET multipoint surface area of 162 m 2 /g.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom