z-logo
Premium
Evaluation of ecological restoration success in mining‐degraded lands
Author(s) -
Bandyopadhyay Sneha,
Maiti Subodh Kumar
Publication year - 2019
Publication title -
environmental quality management
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.249
H-Index - 27
eISSN - 1520-6483
pISSN - 1088-1913
DOI - 10.1002/tqem.21641
Subject(s) - environmental science , restoration ecology , soil quality , indicator value , vegetation (pathology) , land reclamation , ecological indicator , habitat , cation exchange capacity , silt , ecology , ecosystem , soil water , soil science , medicine , paleontology , pathology , biology
This review article analyzes the importance of assessing the success of ecological restoration by using four indicators: assemblage of the plant and animal communities; enzyme activity; litter accumulation and decomposition; and the improvement of soil quality. These indicators can be used alone or in combinations. Even though the Society for Ecological Restoration International provided a primer containing nine attributes to use as standards for measuring ecological restoration, only three of these attributes could be easily applied due to their low costs and low time requirements. These three attributes include: diversity, vegetation structure, and ecological processes. This review article emphasizes that the criteria for the selection of the indicator species should be based upon: habitat types, abundance of species, ease of measuring, quantifying and interpreting the results, gradual enhancement with time and cost‐effectiveness, sensitivity, variability of response, size, residential status, and requirements of the area. Principal component analysis was applied to calculate the reclaimed mine soil quality index (RMSQI) and the forest soil quality index (FSQI) and the RMSQI value was compared with FSQI (optimum index value of reference ecosystem) to evaluate the restoration success. Available phosphorus, exchangeable magnesium, organic carbon, clay content, field moisture, available nitrogen, electrical conductivity, and pH are identified as the most influential parameters that regulate the health of reclaimed mine soil. Exchangeable calcium, magnesium, cation exchange capacity, sand, silt, clay content, field moisture, available phosphorus, and pH are the controlling properties for forest soil. The observed values of the above‐stated soil indicator properties were converted into a unitless score (0–1.00) and integrated into index calculations (RMSQI and FSQI). The contribution of each soil indicator properties on the calculated index was analyzed, which provides insight into the reason for the measured index. A higher RMSQI indicates better ecological restoration success. The calculated RMSQI was found to be 0.473 in the reclaimed dump, which is 6% lower than the reference ecosystem.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here