Premium
Usage of polystyrene disposable food dishes in the lightweight concrete making
Author(s) -
Asadollahfardi Gholamreza,
Delnavaz Mohammad,
Gonabadi Niloofar,
Asadi Mohsen
Publication year - 2019
Publication title -
environmental quality management
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.249
H-Index - 27
eISSN - 1520-6483
pISSN - 1088-1913
DOI - 10.1002/tqem.21622
Subject(s) - polystyrene , materials science , slump , compressive strength , composite material , expanded polystyrene , penetration (warfare) , scanning electron microscope , portland cement , cement , curing (chemistry) , polymer , operations research , engineering
Abstract The increasing use and subsequent accumulation of polystyrene containers has triggered a substantial environmental problem. This study investigated using varied percentages of solid waste polystyrene disposable food dishes in the production of lightweight concrete samples with 350 kilograms per cubic meter (kg/m 3 ) of cement and a density of 1,300 kg/m 3 . The polystyrene disposable dishes were ground into beads of 0–3 millimeters (mm) and 3–6 mm in size. First, the characteristics of Type II Portland cement, polystyrene, and aggregates were examined. The following characteristics of concrete using ASTM International and British Standards Institution standards were tested: slump, compressive strength, ability to resist chloride ion penetration, and resistance of concrete to rapid freezing and thawing cycles. Scanning electron microscopy (SEM) and energy dispersive X‐ray spectroscopy analytical techniques were also used. The slump of samples varied between 40 and 70 mm and was not dependent on either the polystyrene percentage or the size of the polystyrene beads in the concrete samples ( p ‐value > .05). The compressive strength of the concrete samples after 90 days of curing, and using different percentages of polystyrene, varied between 96 and 113 kilograms per square centimeter (kg/cm 2 ). The resistance of the samples to the freezing and thawing cycle and chloride ion penetration were affected unfavorably by the presence of the polystyrene. The SEM technique indicated that concrete samples containing 15% and 25% polystyrene had denser crystals and less void than concrete samples with 40% and 55% polystyrene.