Premium
Trace elements in sediments in a city with agricultural development
Author(s) -
Juchen Carlos Roberto,
Boas Marcio Antônio Vilas,
Poleto Cristiano,
Juchen Patricia Trevisani,
Hemkemeier Thiago Alex
Publication year - 2018
Publication title -
environmental quality management
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.249
H-Index - 27
eISSN - 1520-6483
pISSN - 1088-1913
DOI - 10.1002/tqem.21545
Subject(s) - barium , zinc , manganese , cadmium , environmental chemistry , trace element , chromium , total organic carbon , enrichment factor , inductively coupled plasma , magnesium , chemistry , copper , nickel , sediment , atomic absorption spectroscopy , metallurgy , heavy metals , geology , materials science , inorganic chemistry , plasma , physics , quantum mechanics , paleontology
The objective of this study was to determine the concentrations of trace elements in sediment samples taken from impermeable urban areas of a city with predominantly agroindustrial development characteristics. For this, samples were taken every month from paved streets in the city of Toledo, Paraná State (PR), Brazil. Thus, trace element levels were obtained through analysis performed by optical emission spectrometry with inductively coupled plasma. Levels of total organic carbon were also obtained through the dry combustion method. When compared to local background levels, the trace element levels were shown to be enriched in the following percentage proportions: barium (Ba) (45.4%), copper (Cu) (48.6%), chromium (Cr) (37.2%), manganese (Mn) (81.6%), nickel (Ni) (0%), lead (Pb) (40%), zinc (Zn) (283.7%), magnesium (Mg) (34.3%), and sodium (Na) (250.2%), whereas the carbon (C) percentages were around 1%. The most significant enrichment factors occurred for Ba, Cr, Pb, Zn, Mg, and Na. The highest rates occurred in geoaccumulation where the sediments were enriched by zinc. According to the principal guidelines, the concentrations obtained for cadmium (Cd), Cr, Cu, Ni, and Zn can cause adverse environmental impacts.