Premium
Di‐2‐ethylhexyl phthalate (DEHP) induces apoptosis and autophagy of mouse GC‐1 spg cells
Author(s) -
Gan Yu,
Yang Dan,
Yang Si,
Wang Jinglei,
Wei Jie,
Chen Jiaxiang
Publication year - 2020
Publication title -
environmental toxicology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.813
H-Index - 77
eISSN - 1522-7278
pISSN - 1520-4081
DOI - 10.1002/tox.22866
Subject(s) - autophagy , apoptosis , atg5 , phthalate , oxidative stress , microbiology and biotechnology , chemistry , viability assay , programmed cell death , biology , biochemistry , organic chemistry
As a widely used plasticizer in industry, di‐2‐ethylhexylphthalate (DEHP) can cause testicular toxicity, yet little is known about the potential mechanism. In this study, DEHP exposure dramatically inhibited cellviability and induced apoptosis of mouse GC‐1 spg cells. Furthermore, DEHP significantly increased the levels of autophagy proteins LC3‐II, Beclin1 and Atg5, as well as the ratio ofLC3‐II/LC3‐I. Transmission electron microscopy (TEM) further confirmed that DEHP induced autophagy of mouse GC‐1 spg cells. DEHP was also shown to induceoxidative stress; while inhibition of oxidative stress with NAC could increase cell viability and inhibit DEHP‐induced apoptosis and autophagy. These results suggested that DEHP induced apoptosis and autophagy of mouse GC‐1 spg cells via oxidative stress. 3‐MA, an inhibitor of autophagy, could rescue DEHP‐induced apoptosis. In summary, DEHP induced apoptosis and autophagy of mouse GC‐1 spg cells via oxidative stress, and autophagy might exert a cytotoxic effect on DEHP‐induced apoptosis.