Premium
Maternal exposure causes mitochondrial dysfunction in brain, liver, and heart of mouse fetus: An explanation for perfluorooctanoic acid induced abortion and developmental toxicity
Author(s) -
Salimi Ahmad,
Nikoosiar Jahromi Mahnia,
Pourahmad Jalal
Publication year - 2019
Publication title -
environmental toxicology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.813
H-Index - 77
eISSN - 1522-7278
pISSN - 1520-4081
DOI - 10.1002/tox.22760
Subject(s) - perfluorooctanoic acid , fetus , placenta , toxicity , mitochondrion , mitochondrial toxicity , endocrinology , biology , medicine , physiology , pregnancy , andrology , biochemistry , genetics
Perfluorooctanoic acid (PFOA) is an octanoic acid and is found in wildlife and humans. We have investigated mitochondrial toxicity in isolated mitochondria from, placenta, brain, liver, and heart after oral exposure with PFOA in mice during gestational days (7‐15). Histopathological examination and mitochondrial toxicity parameters were assayed. Results indicated that PFOA decreased the weight of the fetus and placenta, the length of the fetus and the diameter of the placenta, dead fetuses and dead macerated fetuses in treated mice with 25 mg/kg. Histopathological examination showed that PFOA induced pathological abnormalities in liver, brain, heart, and placenta. Also, PFOA induced mitochondria toxicity in brain, liver, heart of mouse fetus. Our results indicate that PFOA up to 20 mg/kg exposure adversely affect embryofetal/developmental because for mitochondria dysfunction. These results suggested that mitochondrial dysfunction induced by PFOA in liver, heart, and brain lead to developmental toxicity and abnormality in tissues.