z-logo
Premium
Casticin induced apoptotic cell death and altered associated gene expression in human colon cancer colo 205 cells
Author(s) -
Shang HungSheng,
Liu JiaYou,
Lu HsuFeng,
Chiang HanSun,
Lin ChiaHain,
Chen Ann,
Lin YuhFeng,
Chung JingGung
Publication year - 2017
Publication title -
environmental toxicology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.813
H-Index - 77
eISSN - 1522-7278
pISSN - 1520-4081
DOI - 10.1002/tox.22381
Subject(s) - cell cycle , microbiology and biotechnology , viability assay , kinase , biology , protein kinase a , cyclin dependent kinase 2 , apoptosis , chemistry , biochemistry
Casticin, a polymethoxyflavone, derived from natural plant Fructus Viticis exhibits biological activities including anti‐cancer characteristics. The anti‐cancer and alter gene expression of casticin on human colon cancer cells and the underlying mechanisms were investigated. Flow cytometric assay was used to measure viable cell, cell cycle and sub‐G1 phase, reactive oxygen species (ROS) and Ca 2+ productions, level of mitochondria membrane potential ( ΔΨ m ) and caspase activity. Western blotting assay was used to detect expression of protein level associated with cell death. Casticin induced cell morphological changes, decreased cell viability and induced G2/M phase arrest in colo 205 cells. Casticin increased ROS production but decreased the levels of ΔΨ m , and Ca 2+ , increased caspase‐3, ‐8, and ‐9 activities. The cDNA microarray indicated that some of the cell cycle associated genes were down‐regulated such as cyclin‐dependent kinase inhibitor 1A (CDKN1A) (p21, Cip1) and p21 protein (Cdc42/Rac)‐activated kinase 3 (PAK3). TNF receptor‐associated protein 1 (TRAP1), CREB1 (cAMP responsive element binding protein 1) and cyclin‐dependent kinase inhibitor 1B (CDKN1B) (p27, Kip1) genes were increased but matrix metallopeptidase 2 (MMP‐2), toll‐like receptor 4 (TLR4), PRKAR2B (protein kinase, cAMP‐dependent, regulatory, type II, bet), and CaMK4 (calcium/calmodulin‐dependent protein kinase IV) genes were inhibited. Results suggest that casticin induced cell apoptosis via the activation of the caspase‐ and/or mitochondria‐dependent signaling cascade, the accumulation of ROS and altered associated gene expressions in colo 205 human colon cancer cells.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here