z-logo
Premium
Tubular scaffold with microchannels and an H‐shaped lumen loaded with bone marrow stromal cells promotes neuroregeneration and inhibits apoptosis after spinal cord injury
Author(s) -
Chen Xue,
Wu Jian,
Sun Rongcheng,
Zhao Yahong,
Li Yi,
Pan Jingying,
Chen Ying,
Wang Xiaodong
Publication year - 2020
Publication title -
journal of tissue engineering and regenerative medicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.835
H-Index - 72
eISSN - 1932-7005
pISSN - 1932-6254
DOI - 10.1002/term.2996
Subject(s) - spinal cord , scaffold , regeneration (biology) , spinal cord injury , neuroprotection , stromal cell , axon , anatomy , biomedical engineering , chemistry , medicine , neuroscience , pathology , microbiology and biotechnology , biology
As a result of its complex histological structure, regeneration patterns of grey and white matter are quite different in the spinal cord. Therefore, tissue engineering scaffolds for repairing spinal cord injury must be able to adapt to varying neural regeneration patterns. The aim of the present study was to improve a previously reported spinal cord‐mimicking partition‐type scaffold by adding microchannels on a single tubular wall along its longitudinal axis, thus integrating the two architectures of a single H‐shaped central tube and many microchannels. Next, the integrated scaffold was loaded with bone marrow stromal cells (BMSCs) and transplanted to bridge the 5‐mm defect of a complete transverse lesion in the thoracic spinal cord of rats. Subsequently, effects on nerve regeneration, locomotion function recovery, and early neuroprotection were observed. After 1 year of repair, the integrated scaffold could guide the regeneration of axons appearing in the debris of degraded microchannels, especially serotonin receptor 1A receptor‐positive axonal tracts, which were relatively orderly arranged. Moreover, a network of nerve fibres was present, and a few BMSCs expressed neuronal markers in tubular lumens. Functionally, electrophysiological and locomotor functions of rats were partially recovered. In addition, we found that BMSCs could protect neurons and oligodendrocytes from apoptosis during the early stage of implantation. Taken together, our results demonstrate the potential of this novel integrated scaffold loaded with BMSCs to promote spinal cord regeneration through mechanical guidance and neuroprotective mechanisms.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here