Premium
Optimized isolation and expansion of human airway epithelial basal cells from endobronchial biopsy samples
Author(s) -
Gowers Kate H.C.,
Hynds Robert E.,
Thakrar Ricky M.,
Carroll Bernadette,
Birchall Martin A.,
Janes Sam M.
Publication year - 2018
Publication title -
journal of tissue engineering and regenerative medicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.835
H-Index - 72
eISSN - 1932-7005
pISSN - 1932-6254
DOI - 10.1002/term.2466
Subject(s) - biopsy , epithelium , regeneration (biology) , airway , stem cell , cell culture , transplantation , pathology , cell , bronchoscopy , biology , cryopreservation , respiratory epithelium , explant culture , medicine , microbiology and biotechnology , immunology , in vitro , embryo , surgery , genetics , biochemistry
Autologous airway epithelial cells have been used in clinical tissue‐engineered airway transplantation procedures with a view to assisting mucosal regeneration and restoring mucociliary escalator function. However, limited time is available for epithelial cell expansion due to the urgent nature of these interventions and slow epithelial regeneration has been observed in patients. Human airway epithelial cells can be expanded from small biopsies or brushings taken during bronchoscopy procedures, but the optimal mode of tissue acquisition from patients has not been investigated. Here, we compared endobronchial brushing and endobronchial biopsy samples in terms of their cell number and their ability to initiate basal epithelial stem cell cultures. We found that direct co‐culture of samples with 3T3‐J2 feeder cells in culture medium containing a Rho‐associated protein kinase inhibitor, Y‐27632, led to the selective expansion of greater numbers of basal epithelial stem cells during the critical early stages of culture than traditional techniques. Additionally, we established the benefit of initiating cell cultures from cell suspensions, either using brushing samples or through enzymatic digestion of biopsies, over explant culture. Primary epithelial cell cultures were initiated from endobronchial biopsy samples that had been cryopreserved before the initiation of cell cultures, suggesting that cryopreservation could eliminate the requirement for close proximity between the clinical facility in which biopsy samples are taken and the specialist laboratory in which epithelial cells are cultured. Overall, our results suggest ways to expedite epithelial cell preparation in future airway cell therapy or bioengineered airway transplantation procedures.