z-logo
Premium
Chondrocytes from congenital microtia possess an inferior capacity for in vivo cartilage regeneration to healthy ear chondrocytes
Author(s) -
Gu Yunpeng,
Kang Ning,
Dong Ping,
Liu Xia,
Wang Qian,
Fu Xin,
Yan Li,
Jiang Haiyue,
Cao Yilin,
Xiao Ran
Publication year - 2018
Publication title -
journal of tissue engineering and regenerative medicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.835
H-Index - 72
eISSN - 1932-7005
pISSN - 1932-6254
DOI - 10.1002/term.2359
Subject(s) - microtia , cartilage , chondrogenesis , regeneration (biology) , tissue engineering , anatomy , in vivo , microbiology and biotechnology , chondrocyte , pathology , medicine , biology , biomedical engineering
Abstract The remnant auricular cartilage from microtia has become a valuable cell source for ear regeneration. It is important to clarify the issue of whether the genetically defective microtia chondrocytes could engineer cartilage tissue comparable to healthy ear chondrocytes. In the current study, the histology and cell yield of native microtia and normal ear cartilage were investigated, and the biological characteristics of derived chondrocytes examined, including proliferation, chondrogenic phenotype and cell migration. Furthermore, the in vivo cartilage‐forming capacity of passaged microtia and normal auricular chondrocytes were systematically compared by seeding them onto polyglycolic acid/polylactic acid scaffold to generate tissue engineered cartilage in nude mice. Through histological examinations and quantitative analysis of glycosaminoglycan, Young's modulus, and the expression of cartilage‐related genes, it was found that microtia chondrocytes had a slower dedifferentiation rate with the decreased expression of stemness‐related genes, and weaker migration ability than normal ear chondrocytes, and the microtia chondrocytes‐engineered cartilage was biochemically and biomechanically inferior to that constructed using normal ear chondrocytes. This study provides valuable information for the clinical application of the chondrocytes derived from congenital microtia to engineer cartilage. Copyright © 2016 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here