z-logo
Premium
An integrated theoretical‐experimental approach to accelerate translational tissue engineering
Author(s) -
Coy Rachel H.,
Evans Owen R.,
Phillips James B.,
Shipley Rebecca J.
Publication year - 2018
Publication title -
journal of tissue engineering and regenerative medicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.835
H-Index - 72
eISSN - 1932-7005
pISSN - 1932-6254
DOI - 10.1002/term.2346
Subject(s) - tissue engineering , process (computing) , regenerative medicine , peripheral nerve , computer science , engineering design process , biochemical engineering , biomedical engineering , engineering , mechanical engineering , stem cell , medicine , biology , anatomy , genetics , operating system
Implantable devices utilizing bioengineered tissue are increasingly showing promise as viable clinical solutions. The design of bioengineered constructs is currently directed according to the results of experiments that are used to test a wide range of different combinations and spatial arrangements of biomaterials, cells and chemical factors. There is an outstanding need to accelerate the design process and reduce financial costs, whilst minimizing the required number of animal‐based experiments. These aims could be achieved through the incorporation of mathematical modelling as a preliminary design tool. Here we focus on tissue‐engineered constructs for peripheral nerve repair, which are designed to aid nerve and blood vessel growth and repair after peripheral nerve injury. We offer insight into the role that mathematical modelling can play within tissue engineering, and motivate the use of modelling as a tool capable of improving and accelerating the design of nerve repair constructs in particular. Specific case studies are presented in order to illustrate the potential of mathematical modelling to direct construct design. Copyright © 2016 The Authors Journal of Tissue Engineering and Regenerative Medicine Published by John Wiley & Sons Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here