Premium
A Novel Bridge Damage Diagnosis Algorithm Based on Deep Learning with Gray Relational Analysis for Intelligent Bridge Monitoring System
Author(s) -
Xiao Haitao,
Wang Wenjie,
Dong Limeng,
Ogai Harutoshi
Publication year - 2021
Publication title -
ieej transactions on electrical and electronic engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.254
H-Index - 30
eISSN - 1931-4981
pISSN - 1931-4973
DOI - 10.1002/tee.23353
Subject(s) - computer science , algorithm , bridge (graph theory) , artificial intelligence , machine learning , artificial neural network , deep learning , medicine
In recent years, intelligent structural damage diagnosis algorithms using machine learning have achieved much success. However, because of the fact that in real bridge applications, the working environment (load, temperature, and noise) is changing all the time, degradation of the performance of intelligent structural damage diagnosis methods is very serious. To address these problems, a novel bridge diagnosis algorithm based on deep learning is proposed. Our contributions include: First, we proposed an improved denoising auto‐encoder‐based deep neural networks, which is optimized by the gray relational analysis. It is able to automatically extract high‐level features from raw signals via a multi‐layer extraction to satisfy any damage diagnosis objective and thus does not need any time consuming denoising prepossessing. The model can achieve high accuracy under noisy environment. Second, the algorithm does not rely on any domain adaptation algorithm or require information of the target domain. It can achieve high accuracy when working environment is changed. Numerical simulations and experimental investigations on real bridges conducted to present the accuracy and efficiency of the proposed algorithm, comparing with other commonly machine learning‐based algorithms. The result shows it is deemed as an ideal and effective method for damage diagnosis of bridge structures. © 2021 Institute of Electrical Engineers of Japan. Published by Wiley Periodicals LLC.