z-logo
Premium
A geometry‐based two‐step method for nonlinear classification using quasi‐linear support vector machine
Author(s) -
Li Weite,
Zhou Bo,
Chen Benhui,
Hu Jinglu
Publication year - 2017
Publication title -
ieej transactions on electrical and electronic engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.254
H-Index - 30
eISSN - 1931-4981
pISSN - 1931-4973
DOI - 10.1002/tee.22479
Subject(s) - overfitting , support vector machine , classifier (uml) , nonlinear system , linear classifier , artificial intelligence , pattern recognition (psychology) , computer science , margin classifier , mathematics , machine learning , algorithm , artificial neural network , physics , quantum mechanics
This paper proposes a two‐step method to construct a nonlinear classifier consisting of multiple local linear classifiers interpolated with a basis function. In the first step, a geometry‐based approach is first introduced to detect local linear partitions and build local linear classifiers. A coarse nonlinear classifier can then be constructed by interpolating the local linear classifiers. In the second step, a support vector machine (SVM) formulation is used to further implicitly optimize the linear parameters of the nonlinear classifier. In this way, the nonlinear classifier is constructed in exactly the same way as a standard SVM, using a special data‐dependent quasi‐linear kernel composed of the information of the local linear partitions. Numerical experiments on several real‐world datasets demonstrate the effectiveness of the proposed classifier and show that, in cases where traditional nonlinear SVMs run into overfitting problems, the proposed classifier is effective in improving the classification performance. © 2017 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here