z-logo
Premium
A practical sensorless commutation method based on virtual neutral voltage for brushless DC motor
Author(s) -
Yu ChihHsien
Publication year - 2017
Publication title -
ieej transactions on electrical and electronic engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.254
H-Index - 30
eISSN - 1931-4981
pISSN - 1931-4973
DOI - 10.1002/tee.22464
Subject(s) - commutation , counter electromotive force , dc motor , control theory (sociology) , computer science , voltage , compensation (psychology) , motor drive , engineering , control (management) , electrical engineering , mechanical engineering , psychology , artificial intelligence , psychoanalysis
This paper presents a low‐cost and highly practical sensorless control method for brushless DC (BLDC) motor drives. The developed methodology can generate an accurate commutation signal for the BLDC motor by sensing the back electromotive force zero‐crossing point through the virtual neutral voltage of the motor. Since commutation control is critical for the BLDC motor control, a voltage‐controlled phase shifter comprising a hysteresis comparator and voltage‐controlled resistor is proposed in order to perform phase compensation at different speeds and prevent rapid output oscillations due to noise or high‐frequency ripples in the virtual neutral voltage. Finally, several experiments have been performed on a prototype motor to verify the theoretical analysis and demonstrate the practicality and reliability of the proposed sensorless drive method. © 2017 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here