Premium
Optimal coordination of voltage controllable devices in distribution systems using power‐based models and quadratic programming
Author(s) -
Van Dao Tu,
Chaitusaney Surachai,
Hayashi Yasuhiro,
Ishii Hideo
Publication year - 2017
Publication title -
ieej transactions on electrical and electronic engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.254
H-Index - 30
eISSN - 1931-4981
pISSN - 1931-4973
DOI - 10.1002/tee.22439
Subject(s) - photovoltaic system , voltage , computer science , tap changer , quadratic programming , ac power , voltage regulation , matlab , smart grid , electric power system , power (physics) , mathematical optimization , engineering , electrical engineering , mathematics , physics , quantum mechanics , operating system , transformer
The incorporation of photovoltaic (PV) inverters makes the management of voltage difficult for power system operators. One solution is to consider these inverter‐based devices as controllable reactive power (VAr) sources and to coordinate them with other voltage regulating devices in the distribution system. This paper proposes some acceptable approximations to quickly formulate and solve a mixed‐integer quadratic programming problem to periodically determine the optimal voltage coordination of a load tap changer, voltage regulators, capacitor banks, and PVs on a smart grid platform. The solution to the optimization problem is aided by an iteration‐based algorithm. By using the MATLAB software to carry out the simulation and computation, the method is well verified by comparing its generated result with a trustworthy solution obtained from examining all possible coordinating combinations of voltage regulating devices and PVs in a modified IEEE 34‐bus system. The effectiveness and features of the method are clearly illustrated on that test system by considering a time‐varying load and PV generation. The obtained results demonstrate the practical application of this work to medium‐voltage systems. © 2017 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc.