Premium
A new decoupling method for double‐circuit transmission lines with asymmetrical parameters
Author(s) -
Fan Chunju,
Xu Kan,
Liu Qi
Publication year - 2017
Publication title -
ieej transactions on electrical and electronic engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.254
H-Index - 30
eISSN - 1931-4981
pISSN - 1931-4973
DOI - 10.1002/tee.22362
Subject(s) - decoupling (probability) , electric power transmission , sequence (biology) , transmission line , electrical impedance , voltage , impedance parameters , symmetrical components , topology (electrical circuits) , equivalent circuit , computer science , transformation matrix , electronic engineering , algorithm , engineering , transformer , electrical engineering , physics , control engineering , genetics , kinematics , classical mechanics , biology
The six‐sequence component method is widely used in short‐circuit calculation of double‐circuit lines. However, this method can be used to decouple only two parallel transmission lines whose parameters are exactly the same. In this paper, a new sequence component method is introduced to deal with the lines whose parameters are not exactly the same. Mutual impedances between phases of the same line are decoupled first, and then the zero‐sequence mutual impedances between different lines are decoupled. Six new independent components are obtained after decoupling. System impedances are modified based on the relationship between voltages and currents of the new sequence components and the traditional sequence components. According to the boundary conditions of the faults, the characteristics of new sequence components are studied, and the corresponding sequence networks are discussed. According to the combined sequence network, new sequence currents can be calculated, and the phase currents can be obtained easily from the new sequence currents by a transformation matrix. PSCAD simulation results demonstrate that the short‐circuit calculation method proposed in this paper is appropriate and practical to deal with the two parallel transmission lines with different parameters and partially coupled transmission lines. © 2016 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc.