z-logo
Premium
H‐infinity controller for frequency and voltage regulation in grid‐connected and islanded microgrid
Author(s) -
Sheela A.,
Vijayachitra S.,
Revathi S.
Publication year - 2015
Publication title -
ieej transactions on electrical and electronic engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.254
H-Index - 30
eISSN - 1931-4981
pISSN - 1931-4973
DOI - 10.1002/tee.22113
Subject(s) - voltage droop , microgrid , controller (irrigation) , control theory (sociology) , frequency deviation , automatic frequency control , voltage , grid , distributed generation , h infinity methods in control theory , engineering , power (physics) , computer science , voltage regulator , electrical engineering , control (management) , renewable energy , mathematics , artificial intelligence , biology , physics , quantum mechanics , agronomy , geometry
This paper presents a study on a grid‐connected and islanded multiple distributed generation (DG) system for frequency and voltage regulation. The multiple DG system includes solar cells, wind turbine, fuel cell, and battery storage. The H‐infinity controller is used whose weighting parameters are optimized to minimize voltage and frequency deviation. The performance of the system is analyzed under different conditions for both grid‐connected and islanded modes of operation. In case of the load variations, the inner voltage and current loop react based on the H‐ infinity control strategies. The outer power loop uses the droop characteristic controller. The design is simulated using MATLAB/SIMULINK. The simulation results show that the multiple DG system can supply high‐quality power both in grid‐connected and islanded modes. Also, we show that the proposed control methodology will make the system to transit smoothly between the islanded mode and the grid‐connected mode. The results indicate that the frequency and voltage deviations meet the nominal values as per IEEE standard. © 2015 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here