z-logo
Premium
Mechanical characterizations of topology‐insensitive rivet bonding using the sidewall bond principle
Author(s) -
Kang S.,
Lee E.,
Kim H. C.,
Chun K.
Publication year - 2012
Publication title -
ieej transactions on electrical and electronic engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.254
H-Index - 30
eISSN - 1931-4981
pISSN - 1931-4973
DOI - 10.1002/tee.20701
Subject(s) - rivet , materials science , soldering , wafer , microelectromechanical systems , structural engineering , wafer bonding , hardening (computing) , composite material , topology (electrical circuits) , mechanical engineering , optoelectronics , engineering , electrical engineering , layer (electronics)
Our goal was to develop a topology‐insensitive rivet bonding method using the sidewall bond principle for MEMS devices and evaluate its mechanical characteristics. The proposed bonding method is comprised of two fundamental structures with a sidewall bond between them. The first is a male wafer having a relatively thick solder as a donor, and the second is a female wafer as an acceptor with a structure similar to a through‐via. The two wafers are bonded laterally by the reflow phenomena of the solder and the excess volume of the donor with the acceptor then generating a rivet. In this study, these structural features were investigated. The rivet bonding led to an enhancement in the bonding strength due to the plastic hardening behavior of the rivet, serving as a cushion for the stress. This was parametrically studied and experimentally verified. © 2011 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom