Premium
Proper Splitting of Interconnected Power Systems
Author(s) -
Najafi S.,
Hosseinian S. H.,
Abedi M.
Publication year - 2010
Publication title -
ieej transactions on electrical and electronic engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.254
H-Index - 30
eISSN - 1931-4981
pISSN - 1931-4973
DOI - 10.1002/tee.20519
Subject(s) - islanding , blackout , electric power system , robustness (evolution) , computer science , power (physics) , control theory (sociology) , phasor , mathematical optimization , engineering , control (management) , mathematics , biochemistry , physics , chemistry , quantum mechanics , artificial intelligence , gene
Power system islanding is the last defense line to protect power grids from incidence of wide‐area blackout. As a wide‐area control action, power system splitting is a comprehensive decision making problem that includes different subproblems. This paper introduces a novel approach for separation of the entire power system into several stable islands in different loading levels. The proposed method combines both the dynamic and the static characteristics of interconnected power network and determines the proper splitting schemes. The presented algorithm searches for proper islanding strategy in the boundary of primary determined coherent machines using Krylov subspace method and finds the proper splitting points by transferring some of the buses in one island to another island such that total load shedding is minimized. A spanning tree‐based depth first search algorithm is used to find all possible combination of transferred buses. The presented method reduces the huge initial search space of islanding strategy considering dynamic characteristics of integrated power system and reduction of search space to only boundary network. The speed of the proposed algorithm is remarkably high and can be applied for islanding the power system in real‐time. The presented algorithm is applied to IEEE 118 BUS test system. Results show the robustness, effectiveness, and capability of the algorithm to determine fast and accurate proper islanding strategy. Time domain simulation of the islanding strategies confirms that all the islands which are specified by the proposed method are stable. Copyright © 2010 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc.