z-logo
Premium
Low‐Noise Fully Differential Amplifiers Using JFET‐CMOS Integration Technology for Smart Sensors
Author(s) -
Takao Hidekuni,
Vatedka Radhakrishna,
Ito Yoshiaki,
Komakine Fumihito,
Serge Kolelas,
Sawada Kazuaki,
Ishida Makoto
Publication year - 2008
Publication title -
ieej transactions on electrical and electronic engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.254
H-Index - 30
eISSN - 1931-4981
pISSN - 1931-4973
DOI - 10.1002/tee.20267
Subject(s) - jfet , cmos , electrical engineering , amplifier , differential amplifier , electronic engineering , noise (video) , computer science , engineering , transistor , field effect transistor , voltage , artificial intelligence , image (mathematics)
Abstract In this paper, CMOS‐based low‐noise amplifiers with JFET‐CMOS technology for high‐resolution sensor interface circuits are presented. A differential difference amplifier (DDA) configuration is employed to realize differential signal amplification with very high input impedance, which is required for the front‐end circuit in many sensor applications. Low‐noise JFET devices are used as input pair of the input differential stages or source‐grounded output load devices, which are dominant in the total noise floor of DDA circuits. A fully differential amplifier circuit with pure CMOS DDA and three types of JFET‐CMOS DDAs were fabricated and their noise performances were compared. The results show that the total noise floor of the JFET‐CMOS amplifier was much lower compared to that of the pure CMOS configuration. The noise‐reduction effect of JFET replacement depends on the circuit configuration. The noise reduction effect by JFET device was maximum of about − 18 dB at 2.5 Hz. JFET‐CMOS technology is very effective in improving the signal‐to‐noise ratio (SNR) of a sensor interface circuit with CMOS‐based sensing systems. © 2008 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here