Premium
Using bridging analogies and anchoring intuitions to deal with students' preconceptions in physics
Author(s) -
Clement John
Publication year - 1993
Publication title -
journal of research in science teaching
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.067
H-Index - 131
eISSN - 1098-2736
pISSN - 0022-4308
DOI - 10.1002/tea.3660301007
Subject(s) - analogy , bridging (networking) , mathematics education , curriculum , anchoring , epistemology , analogical reasoning , class (philosophy) , teaching method , science education , concept learning , computer science , psychology , pedagogy , cognitive science , artificial intelligence , computer network , philosophy
Lessons were designed to deal with students' alternative conceptions in three areas of mechanics: static normal forces, frictional forces, and Newton's third law for moving objects. Instructional techniques such as class discussions of the validity of an analogy between a target problem and an intuitive anchoring example, and forming a structured chain of intermediate bridging analogies were used. There were large differences in pre–posttest gains in favor of the experimental group. In formulating a model of learning processes that can explain these results, it is argued that (a) the lessons have a more complex structure than a simple model of analogy use; (b) rational methods using analogy and other plausible reasoning processes that are neither proof based nor directly empirical can play a very important role in science instruction; (c) much more effort than is usually allocated should be focused on helping students to make sense of an analogy; and (d) researchers and curriculum developers should be focusing at least as much attention on students' useful prior knowledge as they are on students' alternative conceptions.