z-logo
Premium
Exploring the use of multiple analogical models when teaching and learning chemical equilibrium
Author(s) -
Harrison Allan G.,
De Jong Onno
Publication year - 2005
Publication title -
journal of research in science teaching
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.067
H-Index - 131
eISSN - 1098-2736
pISSN - 0022-4308
DOI - 10.1002/tea.20090
Subject(s) - analogy , mathematics education , plan (archaeology) , psychology , teaching method , analogical reasoning , negotiation , concept learning , agency (philosophy) , science education , subject (documents) , computer science , epistemology , sociology , social science , philosophy , archaeology , history , library science
This study describes the multiple analogical models used to introduce and teach Grade 12 chemical equilibrium. We examine the teacher's reasons for using models, explain each model's development during the lessons, and analyze the understandings students derived from the models. A case study approach was used and the data were drawn from the observation of three consecutive Grade 12 lessons on chemical equilibrium, pre‐ and post‐lesson interviews, and delayed student interviews. The key analogical models used in teaching were: the “school dance”; the “sugar in a teacup”; the “pot of curry”; and the “busy highway.” The lesson and interview data were subject to multiple, independent analyses and yielded the following outcomes: The teacher planned to use the students' prior knowledge wherever possible and he responded to student questions with stories and extended and enriched analogies. He planned to discuss where each analogy broke down but did not. The students enjoyed the teaching but built variable mental models of equilibrium and some of their analogical mappings were unreliable. A female student disliked masculine analogies, other students tended to see elements of the multiple models in isolation, and some did not recognize all the analogical mappings embedded in the teaching plan. Most students learned that equilibrium reactions are dynamic, occur in closed systems, and the forward and reverse reactions are balanced. We recommend the use of multiple analogies like these and insist that teachers always show where the analogy breaks down and carefully negotiate the conceptual outcomes. © 2005 Wiley Periodicals, Inc. J Res Sci Teach 42: 1135–1159, 2005

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here