Premium
Effect of knowledge integration activities on students' perception of the earth's crust as a cyclic system
Author(s) -
Kali Yael,
Orion Nir,
Eylon BatSheva
Publication year - 2003
Publication title -
journal of research in science teaching
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.067
H-Index - 131
eISSN - 1098-2736
pISSN - 0022-4308
DOI - 10.1002/tea.10096
Subject(s) - systems thinking , context (archaeology) , curriculum , earth system science , higher order thinking , lifelong learning , scientific literacy , perception , mathematics education , literacy , learning cycle , science education , knowledge integration , psychology , pedagogy , teaching method , knowledge management , cognitively guided instruction , computer science , domain knowledge , ecology , artificial intelligence , paleontology , neuroscience , biology
Systems thinking is regarded as a high‐order thinking skill required in scientific, technological, and everyday domains. However, little is known about systems thinking in the context of science education. In the current research, students' understanding of the rock cycle system after a learning program was characterized, and the effect of a concluding knowledge integration activity on their systems thinking was studied. Answers to an open‐ended test were interpreted using a systems thinking continuum, ranging from a completely static view of the system to an understanding of the system's cyclic nature. A meaningful improvement in students' views of the rock cycle toward the higher side of the systems thinking continuum was found after the knowledge integration activity. Students became more aware of the dynamic and cyclic nature of the rock cycle, and their ability to construct sequences of processes representing material transformation in relatively large chunks significantly improved. Success of the knowledge integration activity stresses the importance of postknowledge acquisition activities, which engage students in a dual process of differentiation of their knowledge and reintegration in a systems context. We suggest including such activities in curricula involving systems‐based contents, particularly in earth science, in which systems thinking can bring about environmental literacy. © 2003 Wiley Periodicals, Inc. J Res Sci Teach 40: 545–565, 2003