Premium
High‐throughput single molecule screening of DNA and proteins
Author(s) -
Yeung Edward S.
Publication year - 2001
Publication title -
the chemical record
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.61
H-Index - 78
eISSN - 1528-0691
pISSN - 1527-8999
DOI - 10.1002/tcr.3
Subject(s) - analyte , dna , biomolecule , computational biology , bioanalysis , nanotechnology , throughput , rna , chemistry , high throughput screening , oligonucleotide , microbiology and biotechnology , biology , computer science , gene , biochemistry , materials science , chromatography , telecommunications , wireless
We report a novel imaging technology for real time comprehensive analysis of molecular alterations in cells and tissues appropriate for automation and adaptation to high‐throughput applications. With these techniques it should eventually be possible to perform simultaneous analysis of the entire contents of individual biological cells with a sensitivity and selectivity sufficient to determine the presence or absence of a single copy of a targeted analyte (e.g., DNA region, RNA region, protein), and to do so at a relatively low cost. The technology is suitable for DNA and RNA through sizing or through fluorescent hybridization probes, and for proteins and small molecules through fluorescence immunoassays. This combination of the lowest possible detection limit and the broadest applicability to biomolecules represents the final frontier in bioanalysis. The general scheme is based on novel concepts for single molecule detection (SMD) and characterization recently demonstrated in our laboratory. Since minimal manipulation is involved, it should be possible to screen large numbers of cells in a short time to facilitate practical applications. This opens up the possibility of finding single copies of DNA or proteins within single biological cells for disease markers without performing polymerase chain reaction or other biological amplification. © 2001 John Wiley & Sons, Inc. and The Japan Chemical Journal Forum Chem Rec 1:123–139, 2001