Premium
Hybrid Interfaces in Molecular Spintronics
Author(s) -
FormentAliaga Alicia,
Coronado Eugenio
Publication year - 2018
Publication title -
the chemical record
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.61
H-Index - 78
eISSN - 1528-0691
pISSN - 1527-8999
DOI - 10.1002/tcr.201700109
Subject(s) - spintronics , ferromagnetism , nanotechnology , heterojunction , molecular electronics , materials science , electronics , molecule , optoelectronics , condensed matter physics , physics , engineering , electrical engineering , quantum mechanics
Molecular/inorganic multilayer heterostructures are gaining attention in molecular electronics and more recently in new generation spintronic devices. The intrinsic properties of molecular materials as low cost, tuneability, or long spin lifetimes were the original reasons behind their implementation. However, the non‐innocent role played by these hybrid interfaces is a determinant factor in the device performance. In this account we will give an overview about different types of hybrid molecular system/ferromagnet interfaces, which can be of direct application in molecular spintronics. This includes the insertion of a 2D material in between the molecular system and the ferromagnet. As perspective, new hybrid interfaces able to tune the spin properties under an external stimulus, are proposed. These smart interfaces, based on switchable magnetic molecules or flexible MOFs, can open the way to new multifunctional spintronic devices able to couple the spin with a second property.