Premium
Recent Developments in the Chiral Brønsted Acid‐catalyzed Allylboration Reaction with Polyfunctionalized Substrates
Author(s) -
Barrio Pablo,
Rodríguez Elsa,
Fustero Santos
Publication year - 2016
Publication title -
the chemical record
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.61
H-Index - 78
eISSN - 1528-0691
pISSN - 1527-8999
DOI - 10.1002/tcr.201600069
Subject(s) - aldehyde , catalysis , brønsted–lowry acid–base theory , chemistry , organic chemistry , work (physics) , enantioselective synthesis , combinatorial chemistry , engineering , mechanical engineering
Asymmetric allylboration has played a central role in organic synthesis ever since the pioneering work by Hoffman and Brown, having found applications in the total synthesis of many natural products. A new dawn for this 40 year‐old reaction occurred with the beginning of the new century when the first catalytic asymmetric methods came into play. In less than one decade, several methodologies, able to achieve the desired homoallylic alcohols with ee ranges in the high 90s, were developed. Among them, in the present account, we will disclose our contribution to the development of the chiral binolphosphoric‐derived Brønsted acid‐catalyzed allylboration of aldehydes originally reported by Antilla in 2010. Our contribution to this field lies in its application to polyfunctionalized systems, both on the aldehyde and the allylboronate in question, which enables the rapid construction of molecular diversity and complexity. Parts of the work described herein have been carried out in collaboration with the groups of Profs. Akiyama and Houk.