Premium
Organophosphine syntheses via activation of the phosphorus‐silicon bond of silylphosphines
Author(s) -
Hayashi Minoru
Publication year - 2009
Publication title -
the chemical record
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.61
H-Index - 78
eISSN - 1528-0691
pISSN - 1527-8999
DOI - 10.1002/tcr.200900011
Subject(s) - phosphorus , silicon , bond , chemistry , business , organic chemistry , finance
This paper describes the recent advances in the syntheses of organophosphines by forming several types of phosphorus‐carbon bonds via activation of the phosphorus‐silicon bond of silylphosphines. In this account, the activation methods are classified into three types: nucleophile‐induced activations, reactions with Lewis acid‐activated electrophiles, and transition metal catalyzed reactions. Nucleophile‐induced activations of silylphosphines, especially by a fluoride, generated a reactive phosphide equivalent for selective formation of a P‐C bond. Silylphosphines also reacted selectively with Lewis acid‐activated electrophiles. The Lewis acid mediated/catalyzed additions and substitutions, to form sp 3 ‐carbon‐phosphorus bonds including an asymmetric reaction, are described. Several important types of transition metal catalyzed reactions of silylphosphines are also mentioned in this account. Selective formation of a P‐C bond is achieved through these activations to produce a variety of functional organophosphines including optically active ones. © 2009 The Japan Chemical Journal Forum and Wiley Periodicals, Inc. Chem Rec 9: 236–245; 2009: Published online in Wiley InterScience ( www.interscience.wiley.com ) DOI 10.1002/tcr.200900011