Premium
Vibration control study on a supertall building
Author(s) -
Wang Dy,
Zhou Y.,
Zhu Y.
Publication year - 2012
Publication title -
the structural design of tall and special buildings
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.895
H-Index - 43
eISSN - 1541-7808
pISSN - 1541-7794
DOI - 10.1002/tal.618
Subject(s) - vibration control , structural engineering , vibration , tower , acceleration , damper , tuned mass damper , engineering , computer science , physics , acoustics , classical mechanics
SUMMARY Vibration control of a 288‐m supertall building with connective structure is studied in this work. Fluctuating wind time series of the structure in forward and reverse Y ‐direction in a 10‐year frequency are simulated by modified auto‐regressive method (AR method) to perform wind vibration analysis, and six minor and major earthquake waves are provided by building designer to perform earthquake analysis. Three vibration control schemes with nonlinear viscous dampers are proposed to control structural dynamic responses under wind and earthquake excitations. The dynamic responses of the structure with the proposed control schemes in wind and earthquake excitations are investigated and their vibration control effects are analysed comparatively. The study results show that the modified AR method is reliable and effective for simulating the fluctuating wind exerted on the building. The excessive dynamic responses induced by wind and earthquake excitations can be controlled effectively by the proposed schemes. The peak acceleration of top storey can be reduced by almost 40% for the proposed control schemes in wind excitation. The elastic working state of the connective body between the high tower part and the low tower part in major earthquakes can also be ensured totally. So, the validity and feasibility of the proposed schemes in reducing structural vibration responses can be fully approved. Some suggestions about structural analysis and design under wind and earthquake excitations are proposed. Copyright © 2010 John Wiley & Sons, Ltd.